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Abstract
Predicting the overhead of existing obfuscation techniques and tools is difficult and
imprecise. Non-determinism is a key property of most obfuscation techniques be-
cause it makes them more effective. This results in the protected programs being
internally different for each run of the tools. When working with resource con-
straints like on embedded devices, this causes programs to have varying resource
costs, which may not always fit the restraints. Furthermore, it becomes hard to
predict how modifications to the original program affect the resource cost of the
obfuscated program. This work presents methods of making existing established
techniques predictable and designs and implements a framework to achieve byte
precision for size prediction and instruction count precision for the runtime over-
head. The resulting implementation achieved the precision goals at the cost of using
multiple times the resource cost compared to existing tools for larger programs.
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Chapter 1

Introduction
Security through obscurity is rightfully generally considered bad practice in
software development because it only hinders attackers but ultimately does not
prevent them from extracting information [1]. The main topic of this work focuses
on doing exactly this through software obfuscation techniques. Likewise, tamper-
proofing, used to prevent attackers from changing secrets or code, only introduces
an additional level of difficulty to attacks, which however makes their task harder.
In contrast, protecting secrets through proper methods can actually prevent the
extraction of information. This could be achieved by using analyzed and strong
cryptographic algorithms or making use of only trusted infrastructure.

So why should we bother with obfuscation methods?

Real-world software, especially commercial products, often include secrets but can-
not avoid shipping them in one way or another to the customer. In such cases,
increasing the hurdle to tamper with the software is in the vendors and often the
customer’s good. Products that ship all their features and files with all releases but
lock most of them behind specific licenses are a common example. Often, the devel-
opment process does not allow the product to be split into different builds for each
type of available license. Such thick clients are susceptible to attackers unlocking
more features or extracting files [2]. If attackers or malicious competitors release
a method of reenabling these features without a valid key, the company may lose
revenue. Copyrighted content may be illegally extracted and redistributed, which
would hurt existing or planned sales. For offline software, one worst-case scenario is
that attackers figure out the license key generation and sell their own keys. While
there are methods to prevent cases like the above from happening, most also re-
strict the software in one way or another. For example, validating licenses against
servers owned by the software vendor requires internet access. If the features are
all executed on the client’s computer, attackers may find ways to circumvent the
online verification completely. In the case of expensive software, trusted hardware
dongles are also a popular approach, but may not be adequate for every set of cus-
tomers and product price class. Even choosing to use such devices is not a foolproof
solution. The hardware instead may be targeted and could be vulnerable. While
no attack may be known at the point of shipping them, at a later point one might
be discovered. Updating the hardware for each customer is often not feasible, or at
least expensive. Another example would be shipping a product that in one way or
another contains valuable information, like access keys, important user information,
or propitiatory algorithms. In embedded devices, this is especially relevant, as they
directly save and process user information on the physically accessible device. Be-

1



1. Introduction

cause of all the constraints around them, they often can not connect to the Internet
and rely on trusted infrastructure that way. Even for devices that are capable of
internet connectivity, they often cannot keep constant connections or connect at any
time.
In all of these cases, delaying the attackers and consequently increasing their ex-
penses is in the vendors’ favor. It reduces the number of attackers that have enough
incentive and provides enough time to sell products or to update them.

Another useful method in combination with obfuscation and tamper-proofing is to
diversify the critical parts of programs meant to be protected. This way, attacks
on one specific version will not work on another. Especially on physical devices,
flashing different versions on each device makes attacks less portable. Research has
shown that this method increases the time required to break a system linearly to
the number of unique versions [3].

A problem with most of the techniques used for obfuscation and tamper-proofing,
especially when performing it in a diversifying way, is the difficulty predicting the
resulting size and speed of the programs. For many methods, estimates can be made,
but because of their often fundamentally non-deterministic nature, exact changes
are only seen after completing the obfuscation process and are different between
each run of the used tools. Because many methods interact with each other, the
ordering of the techniques used matters a lot. This makes deriving precise combined
output values just from individually processed results impossible. This may not be
a problem in situations where resources are not constrained and the deviations of
size and runtime overhead do not matter. However, on embedded devices where
resources are limited, this can cause problems. If the obfuscated programs get close
to the resource limits, there would be no way to know if each build fits on the
device as no exact upper bound is known. Expansions to the input program would
also be difficult because changes to it would cause unknown changes to the output,
which may or may not fit anymore. Large programs might physically exceed the
program memory of the device. Programs with high runtime overhead may instead
miss deadlines, or interfere with other processes that need to be executed at regular
intervals.
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1. Introduction

Contribution The contributions of this work are the design and implementation
of a framework for obfuscation techniques that changes existing obfuscation
methods to have a predictable overhead. The existing techniques of Mathe-
matical Operation Encoding (5.1), Literal and Variable Encoding (5.2), Fake
Dependencies (5.3), Bogus Control Flow (5.4), Control Flow Flattening (5.5)
and Virtualization (5.6) are looked at specifically. Rules are developed for
these established techniques to produce deterministic changes in binary size
and execution speed while retaining their non-deterministic nature. In most
cases, these rules require the output of each technique to be padded to have
the same overhead as the worst-case overhead. These changed techniques are
implemented in a framework that guarantees byte precision for the size and
instruction count precision for the runtime overhead.

Outline This work is divided into 9 chapters. Following the introduction, chap-
ter 2 provides information about what obfuscation is and what it is trying
to achieve. Chapter 3 presents an overview of existing frameworks and the
existing literature. Chapter 4 introduces the design of a framework for precise
obfuscation techniques. Chapter 5 lists obfuscation techniques and methods
of making them predictable. Chapter 6 displays some implementation details
and what is possible to do thanks to the predictable behavior. Chapter 7 con-
tains the evaluation of the framework implementation and how it compares to
existing frameworks. Chapter 8 discusses possible future work and Chapter 9
concludes the results.

The implementation of the framework and techniques can be found at
https://github.com/Pusty/Obfuscat
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Chapter 2

Background
To know how to effectively protect the valuable and sensitive information in pro-
grams, a definition of what exactly should be protected is needed. It is also important
to look at who the potential attackers are and how they operate, as well as define
the general concepts this work is based around.

2.1 Secrets
Almost all commercial software contains potentially sensitive information in the
shipped product. This information can range from hardcoded cryptographic keys
in client-side applications to media assets or proprietary code snippets. The impor-
tance of certain secrets depends on both the attacker’s objectives and the context of
the software. Some secrets may seem relevant at first glance but provide no value on
further inspection, while others may seem irrelevant but are very precious to attack-
ers. Common types of secrets include external application programming interfaces
and their keys, fixed cryptographic keys, license keys and their authentification code,
proprietary algorithms, and copyrighted material.

Externally used Application Programming Interfaces (APIs) might be valuable to
attackers when these interfaces are not documented or otherwise available but are
of little value if they are public. Even publicly available, APIs might still be a risk
when keys are shared between releases, as attackers could use them for denial of
service attacks when these APIs are rate limited. Especially risky would be keys
to external interfaces that are paid per access or automatically upgrade payment
plans after receiving a certain amount of requests. In those instances, disclosure of
these keys could lead to high financial costs. In some situations, it may be possible
to provide users with individual access keys, but for these to work, the user would
first need to authenticate themself to the service. This initial authentication itself
would then be a potential risk when used by non-authorized third-party programs.
For applications with numerous copyrighted assets, the associated download keys
may also be valuable to externally access them or obtain them before they would
be regularly distributed.

The risks of using hardcoded cryptographic keys in the product provided to users
can be quite severe as well. In cases of symmetric encryption, attackers having
access to the keys compromises the whole system. For asymmetric encryption, this
is only the case when the private keys are leaked. Depending on which keys the
application itself uses, even external access to some of the keys could be a risk, as
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2. Background

attackers might be able to encrypt arbitrary content to trigger bugs in the decoding
process or impersonate the party whose keys they obtained. Examples with financial
implications in the missed potential sales are mobile video games when through the
disclosure of the keys the encrypted game states get modified in ways normally
only possible through purchases. Protected media assets like streaming movies, or
game assets, that could be extracted and illegally published or reused are another
example. Even outside of monetary risk, known keys can provide risks, as seen in
smart devices securing personal data where attackers might gain access to sensible
individual information of customers.

Although diminishing, another popular example of secrets can be found in license
keys for offline software. Compared to software that relies on an internet connection,
it is not possible to verify the keys on trusted infrastructure. In those cases, there
is also the risk of legitimate customers sharing their license keys. This is something
that can be mitigated both legally and through revoking their access to the program
in later versions though. The much greater secret is the license validation algorithm
that is part of the product code to enable the product. If attackers gain full knowl-
edge about its inner workings, they can generate their own licenses using so-called
"keygens". These attacker-generated keys are indistinguishable from real ones if such
an attack was not considered during the license system design. As such, it is hard
to revoke the access of these illegitimate users without affecting paying customers,
if their existence is even noticed. Software that does not have such restrictions and
uses internet access to connect to trusted license verification servers does not have
this problem. Instead, attackers might target the license checks directly. As long
as a feature is already contained in the program the user has, it could be possible
to remove the license checks around it. Thus, the secret would be locations in the
program handling licensing.

Other sensitive information includes proprietary algorithms, copyrighted assets, spe-
cific implementation details, or personal customer information stored within a prod-
uct.

2.2 Attacker and Attacks
To effectively protect these secrets, an understanding of the attackers’ motivation
and the type of attacks they might employ is required. Collberg et al. [1] provide
three assumptions that provide us further information:

1. The attackers are creative humans trying to work around our defenses.
2. They have no time or access limit on the products.
3. All defenses only hold up for a certain amount of time.

The third point is especially relevant. The conviction that the attack is worth the
attacker’s time and energy is the only thing we can work against through obfusca-
tion and tamper-proofing. All methods inherently try to discourage these attackers
from their attack or make them spend as much time as possible on the defense itself
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2. Background

instead of compromising the protected software. Because the attackers are inventive
and do not follow set procedures, techniques that solely focus on being algorith-
mically hard to remove are not necessarily a problem for the attacker to manually
workaround. Focusing on methods that are difficult to manually workaround may
not be a problem for the attacker if it is simple for them to develop tools to algo-
rithmically circumvent them.

Schrittwieser et al. propose a model for the specific objectives analysts may have
[4]:

1. Finding the location of data
2. Finding the location of program functionality
3. Extraction of code fragments
4. Understanding the program

The table below categorizes the previously mentioned examples following this model:

Scenario Objectives
Extraction of user data Location of data
Extraction of keys Location of data
Extraction of assets Location of data
Extraction of keys at runtime Location of program functionality

Bypass license checks Location of program functionality
Extraction of code fragments

Proprietary code reuse Extraction of code fragments
Key generator development Understanding the program
Stealing of proprietary algorithms Understanding the program

Table 2.1: Categorization of previous examples following Schrittwieser et al.’s
model

To achieve these goals attackers will either analyze and attack the product stati-
cally or dynamically. Static attacks are done on the program files themself without
executing them, whereas dynamic attacks focus on the specific runtime behavior of
a program.

Part of static analysis is to disassemble the code of a program to analyze the intended
behavior from the compiled code. Control Flow Graphs and Call Graphs can also be
generated from the disassembled code to analyze branch conditions and the overall
flow of the program. For some targets, the attackers are also able to decompile the
code. In this step, the tools will try to reconstruct high-level code by optimizing
and inferring high-level artifacts out of the assembly to be as readable and easy
to understand as possible. For Java programs, the decompilation step is especially

7



2. Background

relevant as these programs provide bytecode with significant metadata annotations,
which makes high-level code recovery very precise [5]. The same goes for .NET
programming languages like C#, F#, and Visual Basic.

In contrast to static analysis, dynamic analysis focuses on the runtime behavior of
the target. This includes following the actual executed code and analyzing externally
called functions, the register state, and memory at different points in the program.
As this type of analysis requires the execution of the targetted products, the analyst
either has to provide a compatible platform that can run the program or has to
be able to emulate such a platform through software. This also makes the analysis
susceptible to defense techniques that detect differences in the execution platform
or the tracing of the program and react to it. The focus on runtime behavior
allows gaining specific information about the program for the analyzed set of inputs.
However, compared to static analysis, dynamic analysis does not provide global
knowledge about all possible behaviors of the program.

Another type of analysis method is Symbolic Execution proposed by James King
[6]. Instead of executing programs normally, the inputs are replaced with symbols
representing arbitrary values. Instead of working on concrete values, the program
now computes formulas on these symbolic inputs, and when encountering branches
evaluates all possible destinations. This technique can be used to automatically
analyze code [7] and gain knowledge about how code execution and inputs correlate.
The automatic nature of this type of analysis makes it especially relevant for secrets
where this connection is meant to be protected or encoded secrets can be recovered.

All these previously mentioned methods are passive because they do not change the
actual program, but try to extract information out of it. Attackers may also want
to perform active tampering attacks where they change parts of the product to let
it perform actions it would not under normal circumstances. Trying to circumvent
license checks by removing them or replacing parts of the product with malicious
assets would fall under this category, and need additional care when trying to defend
a program.

2.3 Obfuscation
Obfuscators formally defined by Barak et al. [8] are algorithms that transform
arbitrary input programs into output programs that follow the following constraints:

1. The functionality of both the input and output programs must be the same
for all inputs.

2. The output program may at most be polynomially slower than the input pro-
gram.

3. The output program must fulfill the virtual black-box property, which means
that analyzing the output program with full internal access should be as hard
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2. Background

as analyzing the input program as a black box.

While the same paper presents that it is impossible to develop algorithms fulfilling all
of these constraints, this definition and the concept of Obfuscation still has practical
application. While the black-box property cannot be met, obfuscation algorithms do
make analysis more complex and subsequently, force the malicious analysts to spend
more time and resources on their attacks on the obfuscated product. Depending on
the methods used, obfuscation can help hide statically otherwise easily findable
data, slow down static and dynamic analysis of code, and mask especially relevant
properties of a program.

In addition, obfuscation techniques may allow for watermarking of binaries with
certain version-specific magic values to identify the source of illegitimate shared
releases of a piece of software.

2.4 Tamperproofing
Tamperproofing, or introducing tamper resistance into software, means implement-
ing mechanisms into the product that prevent or hinder attackers from modifying
it. These techniques may verify the correctness of code at runtime, repair modified
sections or simply modify the executed functionality when detecting a tampered
environment to mislead the attacker.

When these methods are implemented purely through software they may be easily
spotted and removed. For this reason, it is important to additionally apply obfus-
cations or other protection techniques on the tamper-proofed code to be effective.

2.5 Diversifying
The idea behind diversifying software is to distribute multiple versions of the same
software, which are functionally equivalent but differ in implementation, crypto-
graphic keys, or the way they were compiled. This reduces the impact of bugs and
makes analysis and exploitation less scalable, as each version is internally build up
differently. These diversified binaries ideally are constructed such that the analysis
of one version only provides information about how the other versions are function-
ally constructed but not how they work in detail. Through this approach, automated
tooling which modifies, analyzes, or exploits all versions of the software would be
required to be more complex, and the design of such tooling would be more time
and cost-intensive.
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2. Background

N-Level obfuscation goes one step further and proposes to introduce functionally
nonequivalent versions of a program to achieve these goals. Through this method,
even the functionality of the source program is protected against the analysis of
individual versions [3].

2.6 Deterministic Compilation
Deterministic compilation and reproducible builds are a process of ensuring that
compilation output for a given input program is exactly the same when performed
on any machine. By ensuring that the results are always the same, analysis on
one build is ensured to be true for all builds. In such a build environment it is
also possible to verify that neither the source code nor any compilation tool has
not been tampered with. In reality building such a system is difficult because even
at the compiler level, non-determinism may result from the build environment and
compiler optimization techniques [9].
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Chapter 3

Related Work

3.1 Obfuscation Techniques
In this work, existing obfuscation techniques are looked at and modified in a way
where their overhead can be precisely calculated. Banescu et al. [2] and Collberg
et al. [10] [11] provide overviews of a large amount of obfuscation techniques and
classifications methods. On the theory aspect, Barak et al. work focus on developing
a mathematical model for obfuscation [8]. The most simple techniques replace parts
of expressions with equivalent ones. Hacker’s Delight contains many tricks that
can be helpful for obfuscation. Especially interesting are smart equivalences that
are hard to identify [12]. However, because popular obfuscators make use of them,
tools have been developed to specifically remove those tricks [13]. Because some
algorithms are identifiable just by constant values appearing in them [14], techniques
have been developed to encode them. Among them, Mixed-Boolean-Archimetics
and their algorithmic construction look at efficient methods of producing many
equivalences and encodings that use both logic and arithmetic operations [15]. To
make program analysis more difficult, Collberg et al. propose opaque predicates
to make it difficult to know which paths in a program are taken [10]. Another
proposed method to do this is by flattening the control flow graph [16]. Cappaert
et al. especially put in work to strengthen this method [17].
In the evaluation, the strength of the techniques is tested through symbolic execution
[6], which can be used to automatically attack obfuscated code [7].

3.2 Software Obfuscators
Related to this work are both commercial and free obfuscation tools. In the realm
of freely available tools, Tigress 1 and Obfuscator-LLVM [18] stand out.
Tigress is an academically free but closed source, source-to-source obfuscation tool
that works on C and C++ code. Compared to this work, the possible input programs
can be way more expressive. With its focuses on source-to-source obfuscation, it
can be directly used or integrated with native code projects. With a lot of available
transformations and configurations available, it is very versatile. In contrast to this
work, Tigress does not give any guarantees on size or runtime overhead and causes
unpredictability in that regard as it modifies the program on a source code level,
which can lead to small changes in the source code to lead to massive changes in
the native binaries or the other way around.
Obfuscator-LLVM is an academic open-source obfuscation tool that operates on the
LLVM Intermediate Representation. While providing fewer features than Tigress,

1https://tigress.wtf/
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Obfuscator-LLVM can obfuscate code from all language frontends that support the
LLVM ecosystem. This makes it very flexible in the types of programs it accepts
as input. Similar to this work the Intermediate Representation, internally used af-
ter being generated from the source code, is then compiled to native code by the
respective backends. The LLVM ecosystem has the benefit of providing numerous
output targets which are directly supported though. As the obfuscation techniques,
themself get applied on the Intermediate Representation, the size and amount of
executed instructions fluctuate less. The overall predictability of the modifications
is still prone to later optimizations and other compiler passes that influence the
resulting native code. An additional problem with the LLVM Intermediate Repre-
sentation is the number of supported commands and types of control flow changes.
Many different models are supported to account for the large variety of languages
and platforms supported. Because of this, writing passes that work reliable on the
whole internal format becomes complex, especially regarding precise estimating the
overhead without losing functionality.
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Chapter 4

Framework Design
The main goal of this work is to come up with a methodology to give precise guar-
antees about the size and runtime overhead of obfuscation techniques. To achieve
this work proposes a framework design for the techniques and calculations. Within
this framework, the concepts of program representation and obfuscation techniques
will be defined as well as a method to generate native code.

4.1 Design Goals
The design should not limit the processor architectures it will be possible to be used
with. To limit the scope of the actual implementation, this work will focus on a
small subset of programs. The design should also be modular enough to allow for
further expansions and not be too limited in expressiveness.

More precise, the main goals are as following:
Special Purpose Programs as Input: Only programs specially written as input

for the framework are to be considered. The design will leave open how exactly
these limited programs are parsed and processed to be usable by the frame-
work. However, it will define an internal program representation and methods
to manage it.

Executable Code as Output: To be as precise as possible about the predictions
of the size and instructions executed, the framework will output native machine
code usable by the targeted platform. The processing of the IR should be
independent of the output target.

Flexible Framework for Obfuscation Techniques: The design should be mod-
ular and allow for new obfuscation techniques to be added to the framework.
These techniques should have proper access and methods for the level of the
program they are manipulating (Instruction, Basic Block, Method, Program).
Each obfuscation method must precisely define functions to calculate the over-
head it will cause for a given input program.

Ensure Precise Overhead Calculations for Size and Runtime: Each program
holds a set of properties which represent it. The overhead formulas of the ob-
fuscation techniques may only rely on these properties to calculate the changes
in size and runtime overhead. These changes must also be a set of program
properties which represent the obfuscated program. Formulas for these calcu-
lations must exist for both the size overhead and the runtime overhead. For
the runtime overhead, the overhead calculated represents the overhead for a
specific trace of the program. This way it can be used to calculate best-case,
worst-case and average-case performance from the same formula by applying
different program traces. The output formulas for the size and runtime must

13



4. Framework Design

precisely calculate the size and instructions executed when provided to an out-
put native code generator. These formulas themself must be independent of
the targeted binary code.

Program Builder  Pass Generator Binary Code

Figure 4.1: Obfuscation Pipeline: The Builder converts the Input Programs to
the Intermediate Representation (IR). The IR is then passed to one or multiple
obfuscation passes and finally compiled to native code by a Code Generator

4.2 Program Representation
Programs get represented through an internal Intermediate Representation (IR)
within the framework. The converter to generate this IR from an input program
will be called Builder. Obfuscation passes manipulate the IR of a program and
output the modified IR representing the program with the obfuscation pass applied.
The IR contains all required information to synthesize machine code from it, which
the Code Generators are responsible for.
The IR is constructed as follows:
The smallest element is a Node which represents a single operation. A Node may
require input Nodes for its operation. It may also have other immutable data at-
tributes which stay constant during runtime, such as operation size or memory slots
targeted. Possible types of Nodes are Constant Data, Load, Store, Arithmetic Op-
eration, Logical Operation, Memory Allocation, and similar. It is important to
note that some Nodes may not be used as input for another Node, because their
evaluation yields a global action instead of a value, for example being Store Nodes.

123

120 3

+ Store var1

25

Load var1 2

*

Store var1

Figure 4.2: Examples of Nodes: A constant 123, the expression 120 + 3, storing
the value 25 into the variable var1, storing the result of var1 · 2 into the variable
var1
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The next larger unit is Basic Blocks. A Basic Block consists of a sequential list
of Nodes. Nodes that are inputs for other Nodes may be part of the sequential
list themself but are not required to be. A Node may only appear in a single
Basic Block and may not connect to any Node outside of the Basic Block. When
compiled or simulated, Nodes are executed exactly once per Basic Block execution.
The order of execution is sequentially picking the Nodes in the list, recursively
executing all the children of the current Node, and then proceeding with the next
in the list. A Basic Block has to either declare another Basic Block as the default
successor block executed after it or provide a function return value. Optionally,
multiple conditions for other Basic Blocks to succeed the current may be present.
If one of these conditions holds during the runtime, the Basic Block connected to
that condition is executed next instead of the default successor. If no such checks
exist or all conditions are evaluated as being false the required default successor is
executed next, or the function the Basic Block is in returns with the return value
provided.

Load var1 + 25

1
Else var1++

Return var1

BB1

BB2

BB3

0 1 2

Node List

==

Figure 4.3: An example program with three Basic Blocks: The most left one shown
with the inner details which illustrate the sequential Node List and how not all Nodes
are required to appear in it. The equality comparison shows how conditional code
flow can be modeled through Basic Blocks.

The largest unit in the IR is the Function. Functions have a list of Basic Blocks of
which one is the entry point, which gets executed at the beginning. Additionally,
functions need to declare how many parameters they take as input. The static
data, used by Basic Blocks within the functions, is also required to be part of the
structure.

input%2 == 0

doubleIfEven(int input)

return input*2

return input

Yes

No

Static Data

Figure 4.4: A diagram of a Function: When the input is even, return double the
input, otherwise return the original input
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No larger unit to express a program is required, as multiple functions can be merged
into a single Function. This can be done by combining all the lists of Basic Blocks
into a single list, adding one additional argument and Basic Block to selecting which
set of Basic Blocks to execute, and using recursion to call subroutines.

A B

C

D

E

Function a(i) Function b(i)

A B'

C

D

E

Call b
(i)

Call m(1,i)

1 0

Function m(fid, i)

fid

Check

Figure 4.5: A diagram of multiple Functions being merged to one: The Functions
a and b can be merged to m by adding an additional parameter and letting it decide
which code is executed. Function calls are then changed to recursive calls with the
appropriate function identifier added.

4.3 Obfuscation Pass
Generally, obfuscation techniques are not very predictable or deterministic by de-
sign. Deterministic output is often not even helpful as it minders the effectiveness of
the methods used. But as predictability is the focus of this work, existing techniques
have to be adjusted through restrictions. The obfuscation techniques in this design
run as modular passes on the Intermediate Representation of a program. Every valid
program must be able to be obfuscated. The resulting output IR does not have to
be fully deterministic based on the input. Randomness within the predictability
restrictions may be applied and is encouraged. But the applied pass must be pre-
cisely describable, both in size and runtime overhead, by static formulas that take
variables representing properties as input that abstractly describe the IR.

The Intermediate Representation has a set of properties Props that describe the
attributes of the IR that have an impact on the size and runtime behavior of actual
Programs. As such a program in this definition is a map of properties Prop ∈ Props
to the number of occurrences v ∈ N. The set of Programs supported by the frame-
work is Progs. Every Program Prog ∈ Progs has a function Prop : Progs → N
for each Prop ∈ Props that represents the occurance of the property Prop in the
Program Prog. The set of predictable Obfuscation Passes is Passes.
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Every Obfuscation Pass Pass ∈ Passes has a formula PassFP rop : Progs → N for
each Prop ∈ Props that describes the change the Obfuscation Pass Pass has on
the specific property Prop given the input program. For all Obfuscation Passes
Pass ∈ Passes the function Pass : Progs → Progs is the actual applying of the
Obfuscation Pass Pass on a Program Prog ∈ Progs to get the obfuscated Program
Prog′ ∈ Progs.

For every Obfuscation Pass Pass ∈ Passes and every Program Prog ∈ Progs
the equasion {Prop(Pass(Prog)) | Prop ∈ Props} =
{PassFP rop(Prog) | Prop ∈ Props} must hold.

As an example:
For an IR with Constvalue and Mathoperation Nodes.
A Pass O ∈ Passes, that adds an addition that does not change the result to all
constants.
A Program pinProgs that consists out of Math+(Const5, Const7) = 5+7.
Let the set of properites Props be {Const, Math} describing the amount of Nodes
of that type in a program.

Initially for p:

Const(p) = 2
Math(p) = 1

When applying O on p:
O(p) = Math+(Math+(Const5, Const0), Math+(Const7, Const0)) which is a pro-
gram equal to the expression (5 + 0) + (7 + 0)
so
Const(O(p)) = 4
Math(O(p)) = 3

The changes in both size and execution by O can be expressed through the follow-
ing formulas, as the pass adds exactly one constant (Const0) and one mathematical
operation (Math+) to the output for each constants in the input:
OFConst(p) = Const(p) + (Const(p) · 1)
OFMath(p) = Math(p) + (Const(p) · 1)

when applying the Formulas of O on the values of p:

OFConst(p) = Const(p) + (Const(p) · 1) = 2 + (2 · 1) = 4
OFMath(p) = Math(p) + (Const(p) · 1) = 1 + (2 · 1) = 3

as such

OFMonst(p) = Const(O(p))
OFMath(p) = Math(O(p))
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which means:

{Prop(O(p)) | Prop ∈ Props} = {OFP rop(p) | Prop ∈ Props} holds,
so O is a predictable obfuscation technique.

For both size and runtime overhead, separate formulas need to be defined (though
they may be the same for simple Node replacement techniques). For calculating the
size overhead, only the property values of the input program are required. For cal-
culating the runtime overhead, the property values of a specific execution trace need
to be supplied. The predictability for the overhead is determined by the formulas
giving exactly the same output property variables as the output IR for any program.

Through this design, the overhead can be calculated through external means with-
out running a program through the actual passes, as the results of the formulas
will match the obfuscation pass behavior. Additionally, it is possible to calculate
the overhead of chained obfuscation passes by nesting the formulas. So assuming
there was a second pass B the nested overhead of first running pass A and then
B can be expressed as Prop(B(A(p)) = BFP rop({InnerProp → AFInnerP rop(p) |
InnerProp ∈ Props}) for a given property Prop ∈ Props. It is important to note
that properties in these Formulas depend on each other, which means before the
properties of BF can be calculated, all properties of AF need to be calculated first.

4.4 Code Generator
The task of the Code Generators is to take the IR from the Builder or the Obfus-
cation Passes and convert it into native binary code. For the predictability require-
ments, the generator needs to be able to calculate the exact native code size and
amount of instruction from the properties of a program. This way, generators can
predict the exact output from just the properties calculated using the formulas of
obfuscation passes. The easiest way to achieve this is to ensure that the compiled
size of a Node is independent of the context it is in, and for each type, the size and
amount of instructions need to be precisely the same. The same must hold for all
properties related to control flow and the appended static data.

So assuming we have the properties Const and Math and for a given Program p with:

Const(p) = 2
Math(p) = 1

with a Code Generator G in which all Nodes are exactly 16 bytes long and made
out of 4 instructions:

SizeG(p) = Const(p) · 16 + Math(P ) · 16 = 2 · 16 + 16 = 48
InstructionsG(p) = Const(p) · 4 + Math(P ) · 4 = 2 · 4 + 4 = 12
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Chapter 5

Obfuscation Techniques
There are multiple approaches to obfuscating operations on a basic block level.
One of the initially more simple-looking approaches is to replace specific expressions
with equivalent but more complex expressions. More complexity, in this case, means
adding more terms to the replacement expressions. Ideally, the equivalence is not
easily identifiable after the replacements, though judging the strength objectively
is hard. Against manual analysis on instruction-level, this is achievable through
mixing redundant sub-expressions into the original expression (e.g. out of 5 ∗ 3,
the equivalent expression 1 ∗ 5 ∗ 3 + 0 is constructible). Also, simple equivalent
transformations, like replacing a single subtraction with the negation of a swapped
argument subtraction-term, can be done to provide some hindrance and confuse the
low-level analysis.
Techniques such as these fail to stop sophisticated analysis and tooling that works
on higher-level representations, as these make heavy use of simplification and opti-
mization techniques. This way, the redundant expressions, and simple equivalences
get removed and reverted to the original expression or possibly something even more
compact.
In contrast to these simpler operation obfuscations, control flow obfuscation targets
the function level of the program to protect. They modify basic blocks directly but
also may append or remove them. Most importantly, they change how the execution
flows from block to block, or at the very least make both automated tooling and
manual analysts think that it changed. Compared to the previously mentioned
techniques, the following techniques greatly change how a program is interpreted
by automated tooling. The downside is that the overhead increases rapidly when
trying to provide robust obfuscation.

5.1 Mathematical Operation Encoding
A simple obfuscation approach is to encode mathematical operations by replacing
terms with fixed non-obvious equivalent complex expressions. Using fixed replace-
ment terms makes it simple to assess the overhead they will induce, and by padding
them with redundant terms to the same size, the cost per replacement becomes con-
stant. Because the replacement expression will be executed instead of the original
term, the runtime overhead is equal to the size overhead as well and calculatable
through overheadoe = operationsmath ·replacementSizemax. Not all replacement ex-
pressions consist only of mathematical terms but may introduce constants as well,
depending on the granularity of the cost calculation. This may need to be considered
in the padding.
The book Hacker’s Delight [12] by Henry S. Warren provides a rich list of such
possible replacements. In the chapter Addition Combined with Logical Operations,
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multiple equivalences for arithmetic addition, subtraction, and negation as well as
all logical operations are explicitly presented and proven.

x + y = x − (¬y + 1)

x + y = (x ∨ y) + (x ∧ y)

x + y = (x ⊕ y) + (x ∧ y) · 2

All these replacements have in common that the equivalent complex versions contain
both logical and arithmetic operations. This is common among more sophisticated
techniques, as it is generically difficult to undo mixed logical and arithmetic expres-
sions without building a value table.
For multiplication equivalent replacement expressions that fulfill these mixing con-
ditions can also be found:

x ∗ y = (x ∨ y) · (x ∧ y) + (x ∧ ¬y) · (y ∧ ¬x)

x ∗ y = (x ∨ y) · (x ∧ y) + ¬(¬x ∨ y) · (x ∧ ¬y)

The strength of these replacement expressions depends on the equivalences known
to the analysis tools and the optimization techniques implemented. By using equiv-
alences that mix logical and arithmetic terms, this is fulfilled to a certain degree.
However, because all these expressions are fixed, these equivalences may be simplified
through pattern-matching approaches. They can be directly undone by hardcoding
the set of complex replacements used in the deobfuscation tool. Especially for the
techniques presented in Hacker’s Delight and other well-known expressions, such
programs already exist [13], but are not integrated by default into the commonly
used tools.

120 3

+

120

3

-

1~

+

Figure 5.1: Example of Operation Encoding: Encoding of 120 + 3 to the equal
equation 120 − (¬3 + 1)

5.2 Encoding Literals and Variables
Literal values (constants and fixed strings) provide analysts with information about
the code they are used in. Debug strings are the most obvious case, as they directly
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describe what a section of code is supposed to do. Information text strings expose
which part of the code is responsible for which output. Constants might provide in-
formation on where loops start or end. Even worse, algorithms with known constants
could be identified without having to be analyzed. Especially for cryptographic al-
gorithms, this is a common analysis approach, and a multitude of tooling exists for
malware analysis in particular [14]. By encoding these constants and strings, direct
identification through simple magic values or fixed signatures becomes impossible.
One method for encoding constants, proposed by Zhou et al., is to encode them
using mixed-boolean-arithmetic and invertible polynomial functions [15]. Although
less effective, even encoding the literals with a polynomial function and decoding
them at runtime through the inverse function achieves the goal of not having them
be present in a directly identifiable way. The same technique can be used to harden
against dynamic analysis of local variables. By encoding all variables while they
are stored, and only decoding them when they are needed, it is not possible to di-
rectly extract the full local state at a single moment of execution. To extract all
local variable values, multiple points in the execution need to be hooked and pieced
together. As the encoding and decoding of variables are independent of each other,
each variable can have its unique function and inverse function pair. This makes
automatic analysis of the encoding functions more difficult. For parameters or val-
ues that are accessible outside of the obfuscated function scope, it is important to
either not encode and decode them, or encode the parameters at the beginning and
decode them at the end of the function. This is required because the external code
would otherwise be responsible for encoding and decoding the parameters without
knowing the encoding functions. This method also provides some hindrance to static
analysis. Not so much for literal values, as high-level analysis tools will statically
deduce the original value by emulating the decode function. This is possible because
they do not contain any variable inputs, which makes their actual value inferable
by constant propagation. Encoding and decoding of local variables can contain
non-statically deductible variables though. Thus, analysis tools may not be able to
directly simplify these operations without specialized complex analysis.

120

3240

f(x) = (27 * x) mod 2^32

f'(x) = (1749801491 * x) mod 2^32

f(120) = 3240

*

1749801491 

Figure 5.2: Example of Literal Encoding: Encoding 120 by using a reversible linear
polynomial function
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5.3 Fake Dependencies
The problem of high-level analysis tools being able to emulate code that does not
make use of any variables is solvable through another obfuscation technique. This is
done by replacing literal terms with expressions that make use of variables or ideally
even parameters. The main objective of this method is to build expressions fulfilling
this property without static analysis tools being able to deduce it. Injecting these
fake dependencies helps to disrupt static analysis by breaking these optimizations
and symbolic analysis by increasing the expression complexity. Additionally, taint
analysis is hindered, as it becomes harder to deduce which values really depend on
which variables. The previously mentioned method for encoding literals of Zhou et
al. [15] does this through using both polynomial functions for encoding the literals
and mixed-boolean-arithmetic predicates to inject difficult-to-identify fake depen-
dencies to other variables. Hacker’s Delight [12] also provides numerous different
types of predicates that can be used to create connections to unrelated variables.
A very simple example for such a injection could be the following:

x = (x ∧ x) ∧ (x ∨ fake)

These expressions are obviously equal as x ∧ x = x and x ∧ (x ∨ fake) = x. By
including context from larger expressions or even other basic blocks these expressions
can be additionally harderned.

5.4 Bogus Control Flow
Bogus Control Flow, as proposed in [11, Chapter 4.3.4], obfuscates the actual con-
trol flow of a program by inserting conditional branches that are never taken. These
branches may point to other random basic blocks or fake blocks. The methods
that generate fake basic blocks make them look similar to the basic blocks that
get executed normally. Compared to the correct basic block, they introduce wrong
behavior that is not straightforward to spot. When done correctly, this leads at-
tackers to spend time statically analyzing the correct and fake basic blocks or force
them to analyze the program dynamically. The strength of this type of obfuscation
mainly relies on making it hard to deduct that these added conditional branches are
never taken. To achieve this, opaque predicates are used. These predicates output
the same truth value, independent of the input they receive. Collberg et al. pro-
pose multiple methods of building strong opaque predicates for which it is hard to
automatically compute that they are opaque predicates [10].
For simplicity’s sake, the approach looked at in this work does not add any fake
basic block and uses trivial opaque predicates that are solvable within the scope
of a basic block. When calculating the overhead of this implementation, the run-
time and size overhead is the same, as the predicate is always evaluated and the
appended branch is never taken. The overhead can be modeled as overheadbcf =
(operationsopaquepredicate + conditionalBranch) · unconditionalBranches where all
possible opaque predicates must have the same amount of operations. This is achiev-
able by padding the shorter predicates to the length of the most complex one. For
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an implementation that adds fake basic blocks, the runtime overhead would need to
be adjusted to exclude the never-taken jumps from the calculations.
Notice that while there are more complex methods (e.g. two-way opaque predi-
cates where both branches may be taken) opaque predicates that rely on constant
truth values may be easily identified through manual analysis or automated dynamic
analysis.

var1 = 0
BB1

return var1

var1++

BB2

BB3
var1 == 24

else

var1 = 0
BB1

var1++
BB3

return var1
BB2

var1 == 24

var1 == 42

else

else

Figure 5.3: Example of Bogus Control Flow: Bogus Control Flow adding a very
simple impossible conditional jump.

5.5 Control Flow Flattening
Similar to Bogus Control Flow Obfuscation, Control Flow Flattening aims to obfus-
cate the control flow of a program [16]. The control flow is flattened by appending
a new basic block as a dispatcher and having all obfuscated basic blocks jump to
it. The new appended basic block is responsible for choosing which basic block is
executed next. The idea behind this method is that all obfuscated basic blocks
originate from the same source and point back to it, which means no information
can be inferred from just the control flow graph.
One possible implementation is to have a global ‘next block‘ variable. The dis-
patcher uses this variable to determine the next basic block. At the end of each
obfuscated basic block, the block sets the variable to the successor block. For each
block that previously conditionally branched, the ‘next block‘ variable is set con-
ditionally instead. Using multiple basic blocks to implement the conditional ‘next
block‘ assignment would expose the original control flow within the obfuscated con-
trol flow graph. As that would be counterproductive, formulas that achieve the
conditional behavior without branching should be used instead. Such formulas can
be found in [12] for all comparison operations. Another method of strengthening
this obfuscation method [17] is to make the changes to the ‘next block‘ variable
relative to the current basic blocks value.
The overhead for this technique must be divided in both size and runtime overhead
because the dispatcher block will only be counted once towards the program size
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but will be executed for each basic block. Additionally, to initialize the ‘next block‘
variable to jump to the first obfuscated basic block an additional entry point basic
block needs to be added.
As such
sizeOverheadflatten = entryBlock+dispatcherBlock+nextBlockEpilog·basicBlocks−
removedConditionalJumps · conditionalBasicBlocks
and
runtimeOverheadflatten = entryBlock+dispatcher·executedBasicBlocks+nextBlockEpilog·
executedBasicBlocks−removedConditionalJumps·executedConditionalBasicBlocks

next = 1
BB E

var1 = 0
BB1

var1++
BB3

return var1
BB2

goto next
BB D

next = 3 next = var == 24?2:3

var1 = 0
BB1

return var1

var1++

BB2

BB3
var1 == 24

else

next == 1 next == 3
next == 2

Figure 5.4: Example of Control Flow Flattening: Flattening the example program

5.6 Virtualization
Virtualization Obfuscation helps to protect code by compiling it to a custom archi-
tecture instead of the native target. This custom architecture code is then packed
together with an interpreter that decodes and executes it natively. By doing this,
the native code only contains the interpreter for the custom architecture, while the
protected program itself can not be analyzed directly with tooling designed for the
native platform. Static analysis is then only possible if tools are written or adjusted
to work with the custom architecture [19] . A drawback of this approach is that
reusing the same or similar custom architecture makes it possible for attackers to
also reuse their tooling.
Calculating the overhead of this type of obfuscation is complicated and dependent
on the custom architectural design. A very simple design would map each node
from the intermediate representation to exactly one custom architecture instruction.
Compared to the previous mentioned techniques, these techniques do not produce
a clear overhead but change the size and runtime output completely: sizesimplevm =
(entryPoint+dispatcher+∑opcodes

opcode handleropcode)+sizesimplevm−compiler(protectedCode).
As the compiler for the custom architecture must follow the previously defined design
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rules for a compilation backend, the size of the compiled protected code is predictable
as well. The runtime behavior can be expressed as runtimesimplevm = entryPoint +
dispatcher·executedInstructionsall+

∑opcodes
opcode handleropcode·executedInstructionsopcode.

The amount of executed instructions of the protected program will always be more
than the original because all original instructions now require executing the instruc-
tion dispatcher and their instruction handlers. However, the size of the protected
program is not guaranteed to be larger if the size of compiled nodes is smaller for the
custom architecture than for the native platform. In those cases, as the overhead
of the interpreter is fixed, large programs might be smaller in the protected format
than their unprotected native counterpart.
Another feature introduced by access to virtualization obfuscation is that by provid-
ing a portable implementation for the custom architecture interpreter (e.g. written
in C), it is possible to use programs without a native compiler. As it is hard to make
predictable formulas out of these portable implementations, the resulting executed
code may no longer be predictable in size and runtime beyond the behavior of the
custom architecture code.
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Chapter 6

Implementation
Based on the design goals, the actual obfuscation framework Obfuscat 1 was de-
veloped. It takes limited Java programs as input and obfuscates them using the
previously introduced techniques. The main architecture it targets is ARM Thumb2
machine code, which can be directly called from C/C++ code on that platform. It
is implemented in Java and has no external dependencies except a Java Runtime.
The correctness and precision of the obfuscation techniques are internally tested for
the IR and the native targets. For verifying the ARM Thumb2 target, the Unicorn
Framework 2 was used, which is built on top of QEMU 3. For demonstration pur-
poses, a web port using Google’s GWT 4 was made as well, which uses MxGraph 5

to render control flow graphs.

6.1 Intermediate Representation Generation
The design itself explicitly did not specify the methods to generate the Intermediate
Representation of programs, but to practically use the framework, hand-writing the
IR or generating it from templates became impractical outside of very simple pro-
grams. To support more complex programs, a method to generate the IR from an
expressive programming language is preferable. Designing custom tooling to parse
a new programming language introduces a development overhead, though. Addi-
tionally, it would require users to learn yet another domain-specific language and
the tooling around it before being able to use it. Instead, the Obfuscat framework
makes use of the Java Class Format and its Bytecode. The Java Bytecode is what
the Java Virtual Machine uses as the compiled format of programs that run on it
[20]. Many languages, most prominently Java itself, compile to Java Bytecode. This
makes it possible to use the already existing tooling to develop and compile code. As
the Obfuscat Intermediate Representation is noticeably simpler and provides fewer
features than the full Java Virtual Machine specifies, only a subset of the format is
supported. This subset in the context of Java means no Synchronization, Floating
Points, Longs, Objects, or Exception Handling. The supported instructions of the
Java Bytecode get parsed and translated to the Obfuscat IR by the framework. For
efficiency reasons, the format the Java Bytecode uses to store static data arrays is
problematic. When the Java Runtime loads a class for the first time, the static
data array is created and filled with data one by one by the code. As this causes
a high overhead within the Obfuscat framework, the class initialization function is

1https://github.com/Pusty/Obfuscat
2https://www.unicorn-engine.org/
3https://www.qemu.org/
4http://www.gwtproject.org/
5https://jgraph.github.io/mxgraph/
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instead parsed and emulated. Through this, the resulting static data after the class
initialization is read and appended as read-only data to the Obfuscat IR.

6.2 Intermediate Representation Implementation
Following the design specifications of the Intermediate Representation, the following
types of Nodes are implemented:
Constant Constant Nodes return a constant value as their result and take no input.

The value they represent may also be a pointer to static data.
Variable Load Load Nodes load a value from a variable and return it.
Variable Store Store Nodes store a value to a variable. They may not be the

input of any other Node.
Array Load Array Load Nodes load a value from an array at a variable index and

return the loaded value.
Array Store Array Store Nodes store a value into an array at a variable index.

They may not be the input of any other Node.
Mathematical Operation Mathematical Operation Nodes represent a single math-

ematical operation. They take the operants as inputs and return the result of
it.

Allocation Memory Allocation Nodes represent a dynamic memory allocation and
are used for arrays that are created at runtime. They return a reference to the
created array.

Custom Nodes Custom Nodes are made for platform-specific behavior but are
also used to implement calling functions.

Whenever a store operation directly or indirectly has a load operation as an input
node, the load operation needs to be executed within the Basic Block as soon as
the desired value becomes valid. This is required because expressions like i + +
translate to var r = i; i = i + 1; return r. As the store operation cannot be the
input of another node, anything that takes the return result of i + + as input would
connect to the load operation before the store operation. As nodes are executed
sequentially in a basic block, the store operation would be executed before the load
operation, which causes the load operation to return the wrong value.

6.3 Native Code Generation
The actual native backend implemented in Obfuscat generates ARM Thumb2 code.
Traditionally the main target of obfuscation tooling would be x86 for wide usage
in desktop and server computers. Instead, ARM was chosen as the main target for
Obfuscat, because of the very prominent and uprising usage of the architecture in
mobile and embedded devices and more recently tablet and laptop processors. This
allows for a wide range of supported applications for fields where not as much tool-
ing exists. In contrast to ARM mode code, Thumb2 is a more compressed alternate
instruction set supported on ARM processors. Compared to the normal mode in
which instructions are always 4 bytes in size, Thumb2 instructions may be com-
pressed 2 bytes or 4 byte long instructions. This allows for higher code density in
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general. Additionally, it enables using it on more limited ARM processors, designed
for microcontroller use, which only support the compressed format. Generally, the
generated code only uses the base extension instruction set, which exists on every
process since ARMv7. For division, the SDIV instruction is required, which espe-
cially for older ARMv7-A processors might not be present. This implementation
decision was made compared to using software helper functions for integer divi-
sion because all microcontroller-oriented processors are guaranteed to support this
instruction as well most others.
According to the design, every node compiles to the same amount of bytes and
instructions independent of context. The implementation simplifies this even more
and compiles every node or other program property (like jumps) to exactly 16 bytes
made out of 6 instructions. In most cases, this means that compiled nodes contain
code that acts as padding and serves no purpose except aligning them in size and
instruction count. Besides the obvious downside of this increasing the overhead,
the padding instructions may make the manual analysis of the native code more
complex. The resulting code synthesis process is very simple and modular.
With these constraints calculating the actual compiled size and instruction over-
head, becomes were manageable as well:

SizeG(p) = (FunctionPrologue+Nodes(p)+BasicBlocks(p)+ConditionalJumps(p))·
16 + StaticData(p)

Calculating the amount of executed instructions is done by multiplying the amount
of executed nodes and other program properties by 6.
The code generation itself is separated into the following steps:
Sequentializing the Nodes As the basic blocks consist out of abstract semantic

graphs of nodes and the native code is inherently sequential, the nodes need
to be ordered in the sequence they are supposed to be executed.

Conncecting Dependent Nodes The implemented compilation model assumes
that each compiled node reads the values it requires from the stack, processes
them within registers, and writes the result at another stack position.

Optimizing Stack Slots If each node has an individual position on the stack for
the output value, the number of stack spaces required scales directly with
the number of nodes. This is a problem for the more complex obfuscation
techniques because the memory on the stack that is required to be addressed
grows higher than what is easily referenced by individual native instructions.
To reduce the complexity of the node-to-native-code translation, spaces on the
stack are reused after the return value of a node is no longer required.

Node to Native Code Translation The now ordered nodes are then translated
to native code one by one. As the context of the program is irrelevant for the
translation of individual nodes, the translation works over simple templates
where only parameters of instructions are adjusted.

Linking Together As the last step, the basic blocks are linked together through
unconditional and conditional jumps. Additionally, a prologue to process func-
tion arguments and the optional static data are added.
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6.4 Configurable Obfuscation
A feature that arises by making the prediction formulas for the obfuscation tech-
niques so simplistic, is that they become solvable through automated means. This
can be used to automatically choose optimal obfuscation techniques or adjust set-
tings based on restrictions and criteria.
As a proof of this concept, small scripts have been implemented that demonstrate
this using the Z3 theorem prover from Microsoft 6. At first, the obfuscation frame-
work is used to determine the properties of the original unobfuscated program.
Based on these properties, formulas representing the individual obfuscation tech-
nique overheads are given to the Z3, in addition to the formula to calculate the
native code size and runtime overhead from them. These formulas are then chained
together in the following way:
For the Obfuscation Techniques A, B ∈ Passes and with Props = {X, Y, Z}:
For a Code Generator G the size of the whole program can be calculated through
SizeG(p) = X(p) + Y (p) + Z(p). Now by introducing cO, cA, cB ∈ {0, 1} where∑(cO, cA, cB) = 1 must hold, the following function
ObfO|A|B(p) : Progs → Progs can be build: ObfO|A|B(p) = {X → cO · X(p) + cA ·
AFX(p) + cB · BFX(p), Y → cO · Y (p) + cA · AFY (p) + cB · BFY (p), Z → cO · Z(p) +
cA · AFZ(p) + cB · BFZ(p)}. Depending on c0, cA and cB this function does apply
either A, B or no obfuscation on the input Program p. Now it is possible to use
Z3 to solve and optimize for the techniques to apply to the program with given
constraints. This is done by solving for cO, cA, cB, and as only one of these can hold
the value 1 at the same time, the obfuscation technique represented by the variable
can be applied. As the solver does a lot of optimization internally, it is feasible to
stack these formulas recursively, so ObfO|A|BO|A|B with cO0 , cA0 , cB0 , cO1 , cA1 , cB1 etc.
can be calculated as well. In practice a constraint like SizeG(ObfO|A|B(p)) < 1000
could be used to calculate all obfuscation techniques that do not increase the overall
size of the program to over 999 bytes. Similarly, constraints, to limit under which
conditions techniques can be applied, can be added. This could be used to limit
certain methods to only be used last, first, or following another technique.
The end result is a solver program that takes a target program and the maximum
output size as input and outputs an obfuscated program that fulfills the size restric-
tion.

6.5 Browser Port and Control Flow Graph Ren-
derer

The implementation of Obfuscat allowed it to be compiled to JavaScript using
Google’s GWT. In combination with MxGraph, this makes it possible to use the
framework to generate control flow graphs of programs before and after obfuscation
to demonstrate the effect of different techniques (6.1).

6https://github.com/Z3Prover/z3

30



6. Implementation

Figure 6.1: Visualization using Obfuscat: Control Flow Graph of Fibonacci Num-
ber Generation before and after applying Control Flow Flattening and Bogus Control
Flow
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Chapter 7

Results
To see how the obfuscation techniques implemented for Obfuscat perform, they are
compared against each other for different test programs as input. One of the base
assumptions for this work was that the other tools are not predictable and vary in size
and runtime overhead between compilations. Tigress and Obfuscator LLVM are used
as comparisons to see how Obfuscat performs in size overhead, runtime overhead,
and precision. At last, the techniques compared before are roughly individually
tested in their strength against symbolic execution.

7.1 Technique Overhead Evaluation
The first evaluation topic was to compare the techniques implemented in Obfus-
cat with each other. Implementations of the algorithms CRC32 with a small code
footprint, RC4 with a medium amount of code, and SHA1 with a large code size
were used for testing. All measurements were done on the native code blobs directly
generated by the framework. To measure the number of executed instructions,
the Unicorn Framework was used to emulate an ARM environment. The baseline
to which all measurements are relative is the default output of Obfuscat without
any obfuscations applied. To measure how the runtime overhead scales with input
length, the tests were run with randomized input of lengths 128, 256,512, and 1024.
All implementations of the previously mentioned techniques were tested. Because
the overheads are deterministic the measurements represent exact values that are
consistent.

Table 7.1: Obfuscat CRC32 Measurements: Comparison of Obfuscat Techniques
on different programs and input sizes

Input Length in Bytes
Method Size 128 256 512 1024
Default 1 072 141 774 284 484 569 004 1 136 190
OperationEncode 264% 279% 277% 278% 279%
LiteralEncode 279% 314% 312% 312% 312%
VariableEncode 243% 233% 232% 232% 232%
FakeDependency 212% 232% 233% 232% 233%
Flatten 234% 351% 350% 350% 350%
Bogus 154% 159% 158% 158% 158%
Virtualize 1548% 9456% 9422% 9425% 9432%

For CRC32 7.1 the first observation is that except Virtualization, all results are
within 154% (Bogus Control Flow) and 279% (Literal Encoding) size relative to the
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output with no obfuscations. After applying Virtualization Obfuscation, the size
goes up to 1548% of the default. The runtime overhead relative to the default varies
very little relative to each other and does not seem to scale with input size. For most
techniques, the relative size changes seem to be very close to the relative runtime
changes. For Literal Encode (+10.58%) and Control Flow Flattening (+33.14%),
it deviates noticeably though. Virtualization is a special case where the runtime
overhead does not match the size overhead at all, and the runtime overhead ends
up at 9432% of the default output for an input of 1024 bytes.

Table 7.2: Obfuscat RC4 Measurements: Comparison of Obfuscat Techniques on
different programs and input sizes

Input Length in Bytes
Method Size 128 256 512 1024
Default 3 808 175 824 246 480 387 792 670 416
OperationEncode 213% 262% 262% 262% 263%
LiteralEncode 278% 213% 210% 208% 207%
VariableEncode 253% 280% 282% 284% 285%
FakeDependency 211% 170% 169% 168% 167%
Flatten 152% 175% 171% 168% 165%
Bogus 120% 116% 115% 114% 114%
Virtualize 466% 9323% 9334% 9344% 9352%

For RC4 7.2 the relative size changes of Bogus Control Flow are even lower than as
for CRC32 (120%). Control Flow Flattening (152% compared to 234%), Operation
Encoding (213% compared to 264%), and especially Virtualization (466% compared
to 1548%) have a noticeable decrease in size as well. Only Variable Encoding went
up to 253% from the 243% it had for CRC32. The observation that the changes in
runtime overhead are small still holds, but the variety increased. Again, the relative
instructions executed do not seem to scale with input size, except for Virtualization,
where the overhead increases a little bit each time. In contrast to CRC32, the
relative runtime measurements are quite different from the relative size values. Only
the values for Bogus Control Flow seem similar. The runtime overhead falls between
1.14 and 2.85 times the default measurements values, except for Virtualization where
the highest value is 9352% of the default value.
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Table 7.3: Obfuscat SHA1 Measurements: Comparison of Obfuscat Techniques on
different programs and input sizes

Input Length in Bytes
Method Size 128 256 512 1024
Default 63 024 165 702 278 274 503 418 953 706
OperationEncode 300% 333% 332% 331% 331%
LiteralEncode 306% 251% 249% 248% 247%
VariableEncode 223% 237% 239% 240% 240%
FakeDependency 229% 194% 193% 192% 192%
Flatten 104% 147% 148% 148% 148%
Bogus 101% 104% 104% 105% 105%
Virtualize 63% 9118% 9122% 9125% 9126%

For SHA1 (7.3), the relative size change of Bogus Control Flow again decreased to
101%, so only a 1% size overhead was added. The changes of Control Flow Flat-
tening goes down to 104%, Variable Encode to 223%, and for Virtualization to 63%
compared to the non-obfuscated output. This means that applying the Virtualiza-
tion decreased the file size by 37%. For the other methods, the overhead increased,
with Literal Encoding being the highest with a relative change of 306%. Again, the
relative runtime measurements are close together independent of the input length,
only Virtualization increased by small margins relative to the input length. Bogus
Control Flow with 105% and Operation Encoding with 333% were the lowest and
highest changes respectively, excluding Virtualization which increased the amount
of executed instructions by 9126% for an input length of 1024 bytes.

Virtualization overall had the most interesting overhead results. For small programs
like CRC32, the size grew to 1548% of the original, whereas for the medium-sized
RC4, it was already only 466% , and for SHA1 it even decreases the size to 63%.
Because Virtualization replaces the original program with a Virtual Machine, the
static size of this interpreter is added to the size of the previous program. But
because the code generated for the Simple Virtual Machine is denser than the native
Thumb2 code generation, the actual program size is smaller than the default. So
when Nodesprogram ∗ 16 < Nodesprogram ∗ 6 + Nodesinterpreter ∗ 16 holds, the program
will be smaller after using Virtualization obfuscation. The runtime overhead will
be over 9000% , though which is way more than for all other techniques. The size
changes for all other techniques fell between 101% (SHA1 Bogus) and 306% (SHA1
Literal Encode), and the runtime changes between 104% (SHA1 Bogus) and 351%
(CRC32 Flatten).

7.2 Comparison against Tigress and Obfuscator-
LLVM

To see how Obfuscat compares to other open-source obfuscation tools, Tigress and
Obfuscator-LLVM (OLLVM) were run on the same input programs using comparable
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obfuscation settings. For Obfuscat the input programs were written in Java and
compiled to ARM Thumb2 native code blobs which were linked together with C
code and compiled with GCC for Linux. For Tigress and Obfuscator-LLVM, the
input programs were translated to C and compiled for ARMv8-A. As a baseline,
the translated C programs were also directly compiled with GCC and tested. The
tested algorithms were a CRC32 implementation which does not use a lookup table
so it has to iterate over each input byte individually, default RC4, and a SHA1
implementation. The runtime measurements were taken on randomized inputs with
8, 64, 128, 256, 512, and 1024 byte lengths. The size measurements represent the size
of the compiled runnable programs. For the runtime measurements, the amount of
executed instructions were recorded using QEMUs userland emulation. The Cortex-
A15 was the targeted CPU configuration. The runtime measurements do not just
contain the program itself, but also the userland part of the initial loading process,
as well as the LibC startup code. As Tigress and Obfuscator-LLVM do not compile
predictable in size and execution overhead, and to show that Obfuscat fulfills these
properties, for each technique of each tool 100 binaries were compiled and each
run 10 times. The tested techniques were Bogus Control Flow (BCF), Control
Flow Flattening (FLA), and Operation Encoding (SUB). For Obfuscat, the output
without any techniques applied was also evaluated.
Starting with the results on the output file size:

Figure 7.1: CRC32 File Size Comparison

For CRC32, the GCC Baseline was constant at 8 060 bytes. Almost all results were
between 8 000 and 8 500 bytes. This is probably caused by the implementation code
being very small and the binaries mostly being padding and file format overhead.
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Only the Obfuscat Operation Encoding made a noticeable change, with the output
files being always exactly 12 220 bytes in size. It is also noticeable in 7.1 that for all
Tigress outputs, the file sizes varied by a few bytes between compilations.

Figure 7.2: RC4 File Size Comparison

For RC4, as seen in 7.2, the GCC Baseline was constant at 8 320 bytes. Obfuscat’s
techniques yielded 12 220 bytes for everything except Operation Encoding, which
produced 16 316 bytes. For OLLVM and Tigress, large variations were noticeable at
their Bogus Control Flow techniques. OLLVM’s BCF averaged at 10 133.44 bytes
with a standard deviation of 1 996.824 bytes. Tigress BCF averaged at 9 962.6 bytes
with a standard deviation of 1 698.0 bytes. The other techniques of the tools scored
close to the GCC Baseline between 8 400 and 8 900 bytes. OLLVM’s and Tigress
SUB and Tigress FLA had a few bytes variation between compilations.
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Figure 7.3: SHA1 File Size Comparison

For SHA1 in 7.3, the GCC Baseline was constant at 12 404 bytes. Because of the
size of the SHA1 code, all techniques applied a noticeable overhead. The lowest
was Tigress SUB with an average of 20 814.4 bytes, and OLLVM’s FLA with a
constant 20 816 bytes. OLLVM’s SUB generated the largest non-Obfuscat files with
an average of 37 324.08 bytes size. All Obfuscat files were especially large, with the
baseline and BCF being at 69564 bytes, FLA at 73 660 bytes, and SUB at 196 540
bytes. OLLVM’s BCF obfuscation had a noticeable standard deviation between
compilations of 5 685.086 bytes. For OLLVM’s SUB and Tigress BCF, FLA, and
SUB the deviation was a few bytes at most.

Overall the files generated by Obfuscat were generally larger than what the other
tools generated, with SHA1 being almost 4x worse. Precision-wise, Obfuscat output
always had a constant file size. Only the GCC Baseline and Tigress Flattening
had no deviations between compilations otherwise, especially Bogus Control Flow
resulted in large deviations, most likely because of different predicates being picked
each time.

The runtime overhead for the different input sizes was similar, though it is visible
that not all techniques scale the same depending on the input. For randomized
input with a length of 1 024 bytes, the following can be observed:
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Figure 7.4: CRC32 Instructions Executed Comparison for 1024 Byte Inputs

For CRC32 in 7.4, the GCC base program executed 262 765 instructions. The results
for Obfuscat were constant for all runs, with the default at 1 297 910 instructions,
and the maximum at FLA with 4 093 706 instructions. Obfuscat FLA executed
almost two times the instructions of OLLVM FLA, which averaged 2 197 670.66 in-
structions, and four times of Tigress FLA which averaged 516 865.18 instructions.
While Obfuscat’s results were the same across all binaries and inputs, large devi-
ations were observed with all techniques of OLLVM and Tigress. OLLVM’s BCF
averaged 820 656.62 instructions but had a standard deviation of 339 775.315 in-
structions. Similarly, OLLVM FLA and Tigress SUB deviated by 189 541.466, and
100 388.142 instructions respectively. Tigress FLA deviated the least with 2 298.084
instructions.
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Figure 7.5: RC4 Instructions Executed Comparison for 1024 Byte Inputs

For RC4 in 7.5, the baseline was 231 341 instructions. Again Obfuscat’s results were
all constant. However, even without any techniques significantly more instructions
had to be executed than for the other tools. Obfuscat’s baseline was 798 068 instruc-
tions with no techniques as the lowest, and 1 888 688 instructions with SUB applied.
In comparison, all techniques of Tigress and OLLVM were between 252 490.2 and
398 972.06 average instructions executed. Again, the deviation between runs was
large for these tools. For Tigress BCF, the standard deviation was 7 913.161 instruc-
tions, 437.333 for FLA, and 2 457.6 for SUB. For OLLVM even 60 603.55 instructions
for BCF.
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Figure 7.6: SHA1 Instructions Executed Comparison for 1024 Byte Inputs

For SHA1 in 7.6, the GCC baseline was 249 897 instructions. The Obfuscat re-
sults again were all constant, but even for the default version twice as high as for
the worst technique of the other tools.The default was 1 073 996 instructions and
SUB was 3 276 116 instructions. The other tool’s average was between 287 732.02
instructions, and 468 142.34 instructions. Tigress’ standard deviation was relatively
low, with FLA at 143.346 instructions, SUB at 4 288.382 instructions, and BCF
at 6778.603 instructions. OLLVM’s deviations were a lot higher, with SUB at
31 226.187 instructions, FLA at 39 835.731 instructions, and BCF at 97 605 instruc-
tions.

The overall observation is that the overhead by Obfuscat for everything except
CRC32 was always at least twice as large compared to the other tools. For CRC32,
the overhead of Obfuscator LLVM’s BCF and FLA was similar. Precision-wise, all
tools except Obfuscat and the GCC Baseline had deviations between runs. For
some, they were very significant. Only Tigress Control Flow Flattening had minor
deviations for all tested programs. Obfuscator LLVM’s Bogus Control Flow results
especially had large deviations between the runs, similar to how it behaved for size
deviations.

Another interesting observation from the runtime tests is that not all of them scale
the same. The trends of how they behave relative to input size can be seen in the
resulting data.
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Figure 7.7: CRC32 Instructions Executed Comparison

Figure 7.8: SHA1 Instructions Executed Comparison

For CRC32 in 7.7 the results of the 1 024 input are similar for all tested input sizes.
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For SHA1 in 7.8 the scaling of Obfuscat Operation Encoding seems to increase more
rapidly than the other techniques.
Overall the scaling of all tested techniques seems to be polynomial. The standard
deviation also scales with the input size.

7.3 Strength against Symbolic Execution
While it is hard to test the strength of the techniques against manual attacks, it
is possible to get a little bit of insight into how they match up against generic
automated scripts. For this, a generic script for angr 1, a python symbolic analysis
tool, has been prepared to measure how much time each technique adds to the
analysis. The script takes a program as input and analyses which program argument
input will make the program return 1. The only assumptions programmed into the
script are the length of the correct input, the fact that the correct input has to be the
second argument, and the method to read the return value. The to-be-obfuscated
programs first check if the supplied input length is correct, and then sequentially
check each input byte against the correct password. Again, Obfuscat was compared
against Obfuscator LLVM and Tigress with the same techniques as in 7.2. The
correct password had a length of 64 bytes for the tests, and for each technique of
each tool 100 binaries were compiled and run 5 times. The testing was run on a
system with two dedicated Intel Xeon Gold 6 140 cores.

Figure 7.9: Comparison against Angr: Testing the strength of the techniques
against Symbolic Execution

1https://angr.io/
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The results 7.9 show by quite a margin that only Obfuscator LLVM’s Control Flow
Flattening and Obfuscat’s Control Flow Flattening had a meaningful impact on the
time the analysis took. The baseline GCC analysis took an average of 6.894s, Ob-
fuscator LLVM’s Control Flow Flattening took an average of 63.185s and Obfuscat’s
Control Flow Flattening took an average of 424.851s.

This simple test shows that individually, Obfuscat behaves comparably to other
tools, but it has to be put into perspective to be meaningful. First, most of these
techniques are meant to be used combined and are individually very weak. Second,
while Obfuscat’s Control Flow Flattening got the best results by a large margin,
this result is mostly expected. This is because Obfuscat’s methodology is not a
simple implementation like the settings used for Tigress or Obfuscator LLVM yield.
Instead, Obfuscat’s implementation contains the strengthening methods of Cappaert
and Preneel [17] , and the results mostly prove that their methods of strengthening
are effective. Third, all of these results are only valid for the specific password length
and internal program structure. Because of the complexity of the tool and analysis
methods it applies, different input programs may yield completely different results.
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Discussion
The biggest problem shown by the comparison against other tools is that for pro-
grams, which are not small, the approach of this work causes a significantly larger
overhead than others. While twice the size and executed instructions are reasonable
in some applications, it is not always the case. Most of the unnecessary overhead is
caused by padding, which is used on the native code level, and for most obfuscation
techniques. As discussed in this work, to get perfectly precise results, this is required
to some degree. By using a better compilation model or by improving the node to
assembly translations, the efficiency could be generally improved. Additionally, the
costly obfuscations could be more optimized, this could influence the strength of the
techniques though. Instead, it could also be interesting to not aim for precise results
and only calculate the worst-case overhead. This would allow for proper optimiza-
tion on the native code and not require any padding in the obfuscation techniques.
The obvious disadvantage would be that the minimum amount of overhead could
not effectively be calculated. Also, for the precision on the upper bound to hold,
the formulas for the techniques would not change. The calculations of the size and
instructions by the Code Generators would also require calculating the worst-case
output. While the generated native code would be smaller and more efficient, the
estimation formulas would yield the same results as before. To make sure that all
possible outputs still fit the constraints, the same resources as right now would need
to be reserved. A more simple alternative would be to make use of all the padding.
In the current implementation, it serves no purpose except to take up space. The
space could be used for further obfuscation on the assembly level, which the frame-
work currently does not handle at all. Larger paddings could even be replaced with
anti-debugging techniques or anti-tampering checks. This approach is interesting
because it would allow using anti-reverse-engineering tricks in a protected program
without causing any additional overhead.

Another question that came up during the development was how to calculate run-
time overhead. This work settled on using the most predictable unit of executed
instructions. In actual usage, the amount of instructions executed is not interesting
though. Usually, it is about the time a program takes. The amount of executed
instructions and the time a program takes to execute are related, but on most ar-
chitectures calculating the time from the instruction count is not trivial. It would
be interesting to see if it is feasible to build a model for a specific embedded device
to precisely calculate the execution time. Calculating the execution time from the
instruction count should be relatively simple for single-cycle processors (some MIPS
implementations), so a compiler backend for it might make sense. Alternatively,
implementing the Virtual Machine of the Virtualization Obfuscation in a hardware
description language and running it on an FPGA might make precise time calcula-
tions possible.
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Conclusion
Per the initial assumption, this evaluation demonstrated that the actual size and
runtime overhead for obfuscations by existing tools varies between compilation runs.
For some techniques, this variance is quite significant and results in noticeable differ-
ences. With the design of a general framework and rules for obfuscation techniques,
Obfuscat 1 was implemented as a tool to produce predictable overhead of the out-
put. This goal has been successfully met, but compared to the existing tools, the
overhead caused is often > 2x more. Through formulas for each obfuscation tech-
nique, it is possible to calculate the resulting binary size and amount of instructions
that will be executed for a given input. This makes it possible to mathematically
calculate the overhead of these techniques, even when combined. With the help
of automatic solvers, it is possible to calculate which obfuscations to use for any
additional user-given constraints.
As the extra overhead is the biggest problem of the design and implementation, fu-
ture work would focus on reducing it and making use of the mandatory padding as
previously mentioned. Additionally, strengthing the implementations of the obfus-
cation techniques similar to the Control Flow Flattening seems generally desireable.

1https://github.com/Pusty/Obfuscat
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